Basin-forming impacts on Mars and the coupled thermal evolution of the interior

Monday, 14 December 2015
Poster Hall (Moscone South)
James H Roberts, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States and Jafar Arkani-Hamed, University of Toronto, Physics, Toronto, ON, Canada
The youngest of the Noachian giant impact basins on Mars, are either weakly magnetized or completely demagnetized, indicating that a global magnetic field was not present and that a core dynamo was not operating at the time those basins formed. Shock heating from this sequence of basin-forming impacts modified the pattern of mantle convection. The heating produced by the eight largest impacts (Acidalia, Amazonis, Ares, Chryse, Daedalia, Hellas, Scopolus, and Utopia) penetrates below the core-mantle boundary (CMB). Here, we extend previous workon coupled thermal evolution into 3D, in order to accurately model the spatial relationship between impact basins. At the time of each impact we introduce a temperature perturbation resulting from shock heating into the core and mantleStratification of the core occurs very quickly compared to mantle dynamicsand we horizontally average the temperature in the core.We model mantle convection using the 3D finite element code CitcomS, and the thermal evolution of the core using a 1D parameterization.

Each impact alters the pattern of mantle dynamics and a significant amount of impact melt is produced in the near surface. However, only the outermost part of the core is affected; the inner core temperature is still adiabatic. Immediately following the impact, the inner core may remain convective. The top of the core will cool by conduction into the deeper core faster than across the CMB, deepening the zone of stable stratification. Further core cooling results in formation of a convecting zone at the top of the core that propagates downwards as the thermal gradient becomes adiabatic at greater depths. Our goal is to obtain a better estimate of the time scale for restoration of post-impact core dynamo activity. Because the disappearance of the magnetic field exposes the early atmosphere to solar wind activity, constraining the history of the dynamo is critical for understanding climate evolution and habitability of the surface.