C13B-0804
Mass Loss of Glaciers and Ice Caps From GRACE During 2002-2015

Monday, 14 December 2015
Poster Hall (Moscone South)
Enrico Ciraci, University California Irvine, Irvine, CA, United States, Isabella Velicogna, University of California Irvine, Irvine, CA, United States, John M Wahr, Univ of Colorado, Boulder, CO, United States and Sean C Swenson, National Center for Atmospheric Research, Boulder, CO, United States
Abstract:
We use time series of time-variable gravity from the NASA/DLR GRACE mission using a mascon approach to estimate the ice mass balance of the Earth’s Mountain Glaciers and Ice Caps (GICs), excluding the Antarctic and the Greenland peripheral glaciers, between January 2003 and October 2014. We estimate a total ice mass loss equal to -217 ± 33 Gt/yr, equivalent to a sea level rise of 0.6±0.09 mm/yr. The global signal is driven by a few regions, contributing to almost of 75% of the total ice mass loss. Among these areas, the main contributor is the Canadian Arctic Archipelago with a total mass loss of -75 ± 9 Gt/yr, followed by Alaska (-51 ± 10 Gt/yr), Patagonia (-26 ± 10 Gt/yr) and the High Mountains of Asia (-25 ± 13 Gt/yr). The mass loss for most of the arctic regions is not constant, but accelerates with time. The Canadian Archipelago, in particular, undergoes a strong acceleration in mass waste (-7±1 Gt/yr2). The signal acceleration is mainly driven by the northern located Queen Elisabeth Islands (-4.5 ± 0.6 Gt/yr2). A similar behavior is observed for Svalbard and the Russian Arctic. In this second case, however, we observe an enhanced mass loss starting from the second decade of the 21st century after a period of nearly stable mass balance. The observed acceleration helps reconcile regional ice mass estimates obtained for different time periods.