S43A-2767
Stacking coda waves to resolve the scattering and attenuation structure of Southern California
Abstract:
Seismic attenuation is caused by two factors, scattering and intrinsic absorption. Charactering the scattering and attenuation properties and the power spectrum of crustal heterogeneity is a fundamental problem for informing strong ground motion estimates at high frequencies, where scattering and attenuation effects are critical. Determining the relative amount of attenuation caused by scattering and intrinsic absorption has been a long-standing interest of seismologists.The wavetrain following the direct body-wave phases is called the coda and is caused by scattered energy. Many studies have analyzed local-event coda to infer crustal and upper-mantle scattering strength and intrinsic attenuation. Here we describe a comprehensive study of coda behavior in Southern California to resolve scattering and intrinsic attenuation structure. First, we apply an envelope-function stacking method to 287,410 seismograms from 6928 geographically dispersed events of M ≥ 1.8 from 1981–2005. The results are presented as spatial averages as a function of distance, source depth, and frequency. Second, we use a Monte Carlo seismic phonon algorithm to simulate the effects of depth-dependent scattering and intrinsic attenuation, which computes scattering probabilities and scattering angles based on theoretical results for random heterogeneity models. This method has the advantage of including both P- and S-wave scattering and is energy conserving even for multiple scattering models. The input 1-D velocity model can be layered to incorporate reflected phases, such as PmP and SmS, to better fit the observations.
We will summarize our results for the average scattering and attenuation properties of the southern California crust and the implications for strong ground motion predictions.