H53C-1674
Time-lapse Monitoring of Two-dimensional Non-uniform Unsaturated Flow Processes Using Ground Penetrating Radar
Friday, 18 December 2015
Poster Hall (Moscone South)
Blake A Lytle, Clemson University, Department of Environmental Engineering and Earth Sciences, Clemson, SC, United States, Adam R Mangel, Clemson University, Environmental Engineering and Earth Science, Clemson, SC, United States and Stephen M Moysey, Clemson University, Clemson, SC, United States
Abstract:
Unsaturated flow in the vadose zone often manifests as preferential flow resulting in transport of water and solutes through the soil much faster than would occur for uniform matrix flow. Time-lapse ground-penetrating radar (GPR) monitoring shows significant potential for identifying the presence of non-uniform flow and quantitative monitoring of the hydrologic response of a soil system. We investigate non-uniform flow in the vadose zone for an infiltration experiment performed in a 60 cm deep sand-filled tank that is continuously monitored with 1000 MHz reflection GPR. During the experiment, 100 constant offset and 300 common mid-point (CMP) time-lapse radar profiles were collected using an automated gantry system to rapidly position the antennas, allowing for a set of 1 constant offset and 3 CMP profiles to be collected every 13 seconds. The constant offset profiles were interpreted to evaluate spatial and temporal changes of reflected arrivals over the course of the experiment, whereas the CMPs were used to estimate the initial EM wave velocity in the tanks using a normal moveout analysis. Changes in traveltime to a static reflector were used to estimate spatial changes in velocity and to create two-dimensional velocity models. The GPR data were then migrated using the estimated 2D velocity model to improve GPR reflection images, which could then be interpreted to identify evidence of non-uniform flow phenomena. To verify the approach, the methodology was also applied to GPR data simulated using transient water contents generated by the unsaturated flow simulator HYDRUS2D given lab-measured hydraulic properties for the soil. For both the empirical and simulated data, we found that the 2D velocity analysis was effective in monitoring changes in the wetting front and that migration of the reflection profiles was able to improve the interpretation of non-uniform flow.