AE33C-0509
An Analysis of Two Thunderstorms Producing Five Negative Sprites on 12 September 2014
Abstract:
We present a detailed analysis of the thunderstorms and the parent lightning discharge morphologies of five confirmed negative sprites taking place in two different thunderstorms. These two thunderstorms took place in east-central and south Florida on 12 September 2014. We utilized several lightning location networks, remote magnetic field measurements, dual polarization radar, and balloon borne soundings in our analysis. Each parent discharge was immediately preceded by intra-cloud (IC) discharges between the mid-level negative and upper positive charge regions. This either allowed a second upward negative leader to escape the upper positive charge region, or encouraged a downward negative leader to be initiated and connect with ground. The discharges found in this study support the findings of Lu et al., 2012 [JGR,117, D04212, 2012] that negative sprite-parent lightning consists primarily of hybrid intra-cloud negative cloud-to-ground (IC-NCG) and bolt-from-the-blue (BFB) lightning.Our work finds these unique discharges form in thunderstorms that have an excess of mid-level negative charge and weakened upper positive charge. Due to this charge structure, these unusual discharges transfer more charge to the ground than typical negative cloud-to-ground discharges. Our study suggests that the key difference separating bolt-from-the-blue and gigantic jet discharges is an asymmetric charge structure. This acts to bring the negative leader exiting the thundercloud closer to the lateral positive screening layer, encouraging the negative leader to turn towards ground. This investigation reveals IC discharges that involve multiple convective cells and come to ground as a negative CG discharge, a breed of hybrid IC-NCG discharges, also transfer more negative charge to ground than typical negative CG discharges and are able to initiate negative sprites.
From this work, the charge structures mentioned above resulted from tall, intense convective cells with low CG flash rates with high wind shear in the mid to upper regions of the cloud. This acted to create a large reservoir of mid-level negative charge and create a general asymmetry to the charge structure. The wind shear in the upper regions also acted to weaken the upper positive charge by turbulent mixing with the upper negative screening charge layer.