PP31C-2263
The response of southern California ecosystems to Younger Dryas-like rapid climate change: Comparison of glacial terminations 1 and 5.

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Linda E Heusser1, Matthew E Kirby2 and Jonathan E Nichols1, (1)Lamont -Doherty Earth Observatory, Palisades, NY, United States, (2)California State University Fullerton, Fullerton, CA, United States
Abstract:
The Younger Dryas is a well-known rapid climatic cooling that interrupted the Marine Isotope Stage (MIS) 1-2 deglacial warming of Termination 1. This cool event has been associated with ice sheet readvance, meridional overturning, circulation changes, and southward movement of the Intertropical Convergence Zone. In Southern California, the Younger Dryas has been associated with cooler SST, low marine productivity, a well-ventilated oxygen minimum zone, and a wetter climate. Similar rapid cooling events have been found at other terminations including Termination 5 at the MIS 11-12 deglaciation (~425 Ka) identified by ice rafting events in the North Atlantic. Here we present new pollen census data from a unique suite of cores taken from the sub-oxic sediments of Santa Barbara Basin (MV0508-15JC, MV0805-20JC, MV0508-33JC, 29JC and 21JC). These short cores, collected on a truncated anticline within SBB, provide the opportunity to examine the response of southern California terrestrial and marine ecosystems to rapid climate change during the MIS 11-12 deglaciation (Termination 5), which is identified by a bioturbated interval within a sequence of laminated sediments. During Termination 1, changes in Southern California precipitation are reflected in pollen- based reconstructions Southern California vegetation. The high precipitation of glacial montane-coniferous assemblages of pine (Pinus) and Juniper (Juniperus/Calocedrus) transitions into interglacial drought, as expresssed by arid oak (Quercus)/chaparral vegetation. The Younger Dryas interrupts the transition as a high-amplitude pulse in pine associated with increased Gramineae (grass). Termination 5 differs, as the high precipitation of glacial montane-coniferous assemblages do not transition into arid oak/chaparral vegetation. However, a Younger Dryas-like rapid climate event was associated with increased pine and grass.