A12A-05
Impacts of the Denver Cyclone on Regional Air Quality and Aerosol Formation in the Colorado Front Range during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014
Abstract:
The northern Colorado Front Range continues to face challenges related to air quality, specifically ozone, and has been classified as a marginal non-attainment area by the U.S EPA. The highly complex topography and meteorology in the Colorado Front Range provide flow patterns that are driven by mountain-valley circulation, resulting in formation of the Denver Cyclone, strongly influencing concentrations of ozone and aerosol particles. However, the impact of the Denver Cyclone on aerosol formation has not been previously explored.In this study, airborne measurements were made during July 16 - August 18, 2014 aboard the NSF C-130 aircraft during the 2014 Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) project. We carried out fast time resolved measurements of ambient aerosol chemical constituents (organics, sulfate, nitrate, ammonium, and chloride) of non-refractory sub-micrometer particles using an Aerodyne compact time-of-flight aerosol mass spectrometer (mAMS).
Pronounced increased mass concentrations of organics, nitrate, and sulfate in two distinct regions in the Front Range were observed during the cyclone episodes, in contrast to the non-cyclonic days. Organics dominated the mass concentrations on all days evaluated. The average mass concentration of organics during a cyclone event was 5.79 ± 1.48 μg·m-3 and were lower during the two non-cyclonic measurement days, 3.09 ± 1.18 μg·m-3. Average sulfate mass concentrations were 1.25 ± 0.41 μg·m-3 vs. 0.58 ± 0.20 μg·m-3 followed by nitrate with an average of 1.66 ± 0.92 μg·m-3 vs. 0.32 ± 0.41 μg·m-3 on cyclone vs. non-cyclonic days, respectively. Correlations between trace gas markers (carbon monoxide, nitrogen oxides, ozone, ammonia, and ethane), meteorological variables (relative humidity, temperature), and the extent of aerosol aging are evaluated and used to assess the Front Range aerosol formation and air quality impacts in the region during these events.