GC41B-1094
LIS-HYMAP coupled Hydrological Modeling in the Nile River Basin and the Greater Horn of Africa

Thursday, 17 December 2015
Poster Hall (Moscone South)
Hahn Chul Jung, Augusto Getirana and Frederick S Policelli, NASA Goddard Space Flight Center, Greenbelt, MD, United States
Abstract:
Water scarcity and resources in Africa have been exacerbated by periodic droughts and floods. However, few studies show the quantitative analysis of water balance or basin-scale hydrological modeling in Northeast Africa. The NASA Land Information System (LIS) is implemented to simulate land surface processes in the Nile River Basin and the Greater Horn of Africa. In this context, the Noah land surface model (LSM) and the Hydrological Modeling and Analysis Platform (HYMAP) are used to reproduce the water budget and surface water (rivers and floodplains) dynamics in that region. The Global Data Assimilation System (GDAS) meteorological dataset is used to force the system . Due to the unavailability of recent ground-based observations, satellite data are considered to evaluate first model outputs. Water levels at 10 Envisat virtual stations and water discharges at a gauging station are used to provide model performance coefficients (e.g. Nash-Sutcliffe, delay index, relative error). We also compare the spatial and temporal variations of flooded areas from the model with the Global Inundation Extent from Multi-Satellites (GIEMS) and the Alaska Satellite Facility (ASF)’s MEaSUREs Wetland data. Finally, we estimate surface water storage variations using a hypsographic curve approach with Shuttle Radar Topography Mission (SRTM) topographic data and evaluate the model-derived water storage changes in both river and floodplain. This study demonstrates the feasibility of using LIS-HYMAP coupled modeling to support seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes.