G33A-1129
Surface Hydrological Load Displacements from the National Land Data Assimilation System (NLDAS) model

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Christine Maria Puskas, Charles M Meertens and David A Phillips, UNAVCO, Inc. Boulder, Boulder, CO, United States
Abstract:
UNAVCO is currently developing forward displacement models from surface water stored in soil moisture, snowpack, and vegetation based on the National Land Data Assimilation System (NLDAS). UNAVCO already produces hydrological models from the Global Land Data Assimilation System (GLDAS), estimating the elastic loading from surface water at GPS coordinates for stations and processed by the GAGE Analysis Center. GLDAS incorporates satellite and ground observations into forcing parameters to be used for climate and weather models. The GLDAS forcing parameters include temperature, humidity, precipitation, radiation, wind, and pressure data at global 1º grid squares, excluding the oceanic surface. NLDAS uses the same set of forcing parameters but in an area restricted to the continental United States plus parts of Canada and Mexico and with a 0.125º grid. Research groups contribute Land Surface Models (LSMs) based on NLDAS or GLDAS to produce time series of modeled environmental parameters. Individual LSMs differ based on model equations and soil and vegetation properties. In this study we extract the parameters from the NLDAS LSMs to produce hydrologic displacement models at GPS station coordinates within the conterminous US. We check whether NLDAS displacement models can resolve regional variations due to topography that are smoothed in the GLDAS models. We compare the soil moisture, snowpack, and vegetation mass per area directly between the GLDAS and NLDAS LSMs, to see whether the mass variations between GLDAS and NLDAS are large enough to cause significant deformation changes. By comparing the hydrologic displacement models with GPS time series, we estimate how well the surface water loading predicts observed seasonal and secular GPS signals as opposed to tectonic signals. These comparisons will help us evaluate the NLDAS-derived displacement models as part of the process of developing a new model product for use in time series analysis, tectonic or hydrologic studies, and reference frame evaluations.