P11B-2085
The Advanced Jovian Asteroid Explorer (AJAX)

Monday, 14 December 2015
Poster Hall (Moscone South)
Elena Y Adams1, John F Mustard2, Scott L Murchie1, Andrew Rivkin1 and Patrick N Peplowski1, (1)Applied Physics Laboratory Johns Hopkins, Laurel, MD, United States, (2)Brown University, Providence, RI, United States
Abstract:
The Advanced Jovian Asteroid eXplorer (AJAX) is the first mission to characterize the geology, morphology, geophysical properties, and chemistry of a Trojan asteroid. The Decadal Survey outlined a notional New Frontiers class Trojan asteroid rendezvous mission to conduct geological, elemental composition, mineralogical, and geophysical investigations. AJAX, our Discovery mission proposal, addresses the Decadal Survey science goals by using a focused payload and an innovative mission design. By responding to the most important questions about the Trojan asteroids, AJAX advances our understanding of all of the Solar System. Are these objects a remnant population of the local primordial material from which the outer planets and their satellites formed, or did they originate in the Kuiper Belt? Landed measurements of major and minor elements test hypotheses for the Trojan asteroid origin, revealing the outer Solar System dynamical history. How and when were prebiotic materials delivered to the terrestrial planets? AJAX's landed measurements include C and H concentrations, necessary to determine their inventories of volatiles and organic compounds, material delivered to the inner Solar System during the Late Heavy Bombardment. What chemical and geological processes shaped the small bodies that merged to form the planets in our Solar System? AJAX investigates the asteroid internal structure, geology, and regolith by using global high-resolution stereo and multispectral imaging, determining density and estimating interior porosity by measuring gravity, and measuring regolith mechanical properties by landing. AJAX's science phase starts with search for natural satellites and dust lifted by possible cometary activity and shape and pole position determination. AJAX descends to lower altitudes for global mapping, and conducts a low flyover for high-resolution surface characterization and measurement of hydrogen abundance. Finally, it deploys a small landed package, which measures elemental abundances and physical properties of the regolith. AJAX's science data will result in an improved understanding of the early stages of planetary accretion by comparing a Trojan asteroid with near-Earth targets of OSIRIS-REx, Hayabusa 2, and NEAR, and the Kuiper Belt-derived targets of Rosetta and New Horizons.