SH41A-2374
Model of An Expanding Heliosphere
Thursday, 17 December 2015
Poster Hall (Moscone South)
Paul Song, Univ Massachusetts Lowell, Lowell, MA, United States and Vytenis M Vasyliunas, Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany
Abstract:
Conventional models of the heliosphere assume that the heliopause is formed, similarly to the magnetopause of a planet, at the location where the total pressure of the exterior (interstellar) medium is balanced by the total pressure of the interior (heliospheric) medium. The heliosphere, however, differs greatly from a planetary magnetosphere in being dominated by a continuous interior source of mass (present in some planetary magnetospheres, notably Jupiter and Saturn, but not to anything like the same extent), and it differs as well from systems with large interior mass sources such as comets (to which it has also been compared) in being threaded by magnetic flux from its central object (the Sun). The heliosphere must thus expand continually as more and more mass is put into it by the solar wind, with the heliopause marching into the interstellar medium at some non-zero speed while maintaining the plasma total (thermal plus magnetic) pressure equal to that of the interstellar medium. A steady state heliosphere is, strictly speaking, impossible unless and until the distinction between the heliospheric and the interstellar medium has disappeared. The geometry of the expansion can be visualized in different ways. Conventionally it is taken for granted that the expansion is deflected by interstellar flow sideways and channeled into an extended wake/tail region, the rest of the heliosphere being in apparently steady state. Even if this may occur, it would be at a distance much larger than commonly assumed. We explore the alternative possibility of a heliosphere expanding predominantly in the radial direction and describe some of its properties. The input from solar wind and interplanetary magnetic field during each solar cycle forms a shell, with subsequent cycles adding shells of alternating magnetic polarities. The ultimate extent of the heliosphere (in all directions) and the number of shells can be limited by the time until either the solar output or the interstellar medium have changed substantially, as well as by development of local instabilities and other processes associated with the interaction between the heliopause and the interstellar medium which may tend to destroy the distinction and merge the two.