SA24A-09
Slow Narrow Spectral Width E Region Echoes Observed During the March 17-2015 Storm and What They Reveal About the Disturbed Ionosphere.

Tuesday, 15 December 2015: 17:48
2016 (Moscone West)
Jean-Pierre St-Maurice, University of Saskatchewan, Saskatoon, SK, Canada and Jorge L. Chau, Leibniz Institute of Atmospheric Physics, Kühlungsborn, Germany
Abstract:
As auroral-type disturbances moved equatorward during the March 17-2015 storm, coherent E region echoes were observed simultaneously with three radar links separated by 40 km each in the east-west direction in northern Germany. One radar operated at 36.2, and the other two at 32.55 MHz. One of the latter operated in a bistatic configuration. On each radar site five separate antennas were used to locate the echoes using interferometry. The unique configuration provided an unsurpassed opportunity to study the origin and evolution of ionospheric structures in a wide field of view during a strong storm. A most noticeable feature was that over a few time intervals, several minutes in duration each, very narrow spectra were observed, with Doppler shifts roughly 1/2 the ion-acoustic speed (often called "type III" echoes in the past). The inferred location indicated that the echoes came from below 100 km altitude. Echoes moving at the nominal ion-acoustic speed came from higher up and/or different flow angles. In one particularly clear instance the "Type III" echo region came from a region 50 to 75 km in extent drifting at roughly 1.5 km/s, while moving at some small (but non-zero) flow angle with respect to the line-of-sight. In view of the observations, a reevaluation of existing theories indicates that the echoes cannot be related to ion cyclotron waves. Instead, their low altitude and flow angle dependence reveal that they are the by-product of the ion Pedersen instability, which has been investigated by a few groups in relation to a non-isothermal treatment of the Farley-Buneman instability. In our present treatment of the problem, nonlinear effects are invoked to compute the final Doppler shift of the resulting structures. We find that the stronger the electric field is, the closer the region of slow echoes has to be to the ExB direction. In our most dramatic example of Type III structures, the size of the echo region pointed to a region of high energy precipitation 50 km by 50 km in size which was moving at a speed of 1.5 km/s. Without the high energy precipitation, there would have been no plasma produced below 100 km and therefore no "Type III" echoes. The high energy precipitation inference is reminiscent of previous "Type III" radar observations that associated their occurrence with regions of auroral precipitation.