A54C-06
Stationary Wave Interference and its Relation to Tropical Convection and Climate Extremes

Friday, 18 December 2015: 17:15
3004 (Moscone West)
Steven B Feldstein1, Michael Goss1 and Sukyoung Lee2, (1)Penn St Univ, University Park, PA, United States, (2)Pennsylvania State University Main Campus, University Park, PA, United States
Abstract:
The impact of interference between transient eddies and the climatological stationary eddies is examined with ERA-Interim Reanalysis data. Composite calculations show that constructive interference during winter occurs about one week after enhanced Warm Pool convection, and is followed by the excitation of the positive phase of the Pacific/North American teleconnection pattern, an increase in surface air temperature over much of the extratropical Northern Hemisphere, along with a reduction of sea ice in the Barents and Kara Seas, a deceleration of the stratospheric polar vortex, and the excitation of the negative phase of the Arctic Oscillation. This surface warming does occur without prior Warm Pool convection, but it is enhanced and prolonged when constructive interference occurs in concert with the convection. This suggests that climate extremes may be more likely to occur when particular processes, such as Warm Pool convection and constructive interference, occur together. Opposite features are observed when there is destructive interference.

To further investigate the influence of tropical convection, a series of idealized multi-level primitive equation model calculations is performed. The model’s heating profiles are determined from composite CMAP precipitation anomalies for La Niña and El Niño months, and for MJO phase 1 and phase 5. As in the atmosphere, the model calculations find extratropical 300-hPa geopotential height anomalies of opposite sign for MJO phase 1 and El Nino heating, even though the heating profiles closely resemble each other. (Analogous results were found for MJO phase 5 and La Nina.) The model was also run with individual heating anomalies in key geographic locations. The results suggest that the extratropical response to both ENSO and MJO convective heating anomalies can be understood as arising from the competing influences of Warm Pool and central Pacific tropical convection. These results allude to the possibility that the occurrence of climate extremes may be linked to the relative strength of convective precipitation anomalies in the Warm Pool and central tropical Pacific.