SA51C-2429
Terahertz Limb Sounder for Lower Thermosphere Wind, Temperature, and Atomic Oxygen Density Measurements
Friday, 18 December 2015
Poster Hall (Moscone South)
John Boldt and Jeng-Hwa Yee, Applied Physics Laboratory Johns Hopkins, Laurel, MD, United States
Abstract:
In this paper, we present the concept of a high-sensitivity heterodyne spectrometer operating at Terahertz (THz) frequency for global lower thermospheric neutral wind, temperature and atomic oxygen density measurements from a low earth orbit. The instrument, THz Limb Sounder (TLS) is aimed to provide, for the first time, global neutral wind/temperature/density profile measurements globally during day and night, with focus at altitudes of 100-150 km where most of the ion-neutral energy/momentum couplings take place. It is an ambient-temperature Schottky diode based all solid-state heterodyne spectrometer designed to extend the limb sounding technique employed by Microwave Limb Sounder for density/temperature/wind measurements by measuring the Doppler line shape of atomic oxygen (OI) fine structure emission at 2.06THz. This atomic oxygen line emission is very bright and distributed nearly uniformly globally (at all latitudes including high latitude aurora particle precipitation regions) and temporally (at all local times during both day and night), thus ideal for thermospheric remote sensing. TLS is an ambient-temperature Schottky diode based heterodyne receiver system The TLS instrument concept, measurement methodology, receiver performance, and the expected measurement capability will be presented and discussed in this paper.