NH23C-1891
Worst-Case Scenario Tsunami Hazard Assessment in Two Historically and Economically Important Districts in Eastern Sicily (Italy)

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Alberto Armigliato, Stefano Tinti, Gianluca Pagnoni, Filippo Zaniboni and Maria Ausilia Paparo, University of Bologna, Bologna, Italy
Abstract:
The portion of the eastern Sicily coastline (southern Italy), ranging from the southern part of the Catania Gulf (to the north) down to the southern-eastern end of the island, represents a very important geographical domain from the industrial, commercial, military, historical and cultural points of view. Here the two major cities of Augusta and Siracusa are found. In particular, the Augusta bay hosts one of the largest petrochemical poles in the Mediterranean, and Siracusa is listed among the UNESCO World Heritage Sites since 2005. This area was hit by at least seven tsunamis in the approximate time interval from 1600 BC to present, the most famous being the 365, 1169, 1693 and 1908 tsunamis. The choice of this area as one of the sites for the testing of innovative methods for tsunami hazard, vulnerability and risk assessment and reduction is then fully justified. This is being developed in the frame of the EU Project called ASTARTE - Assessment, STrategy And Risk Reduction for Tsunamis in Europe (Grant 603839, 7th FP, ENV.2013.6.4-3). We assess the tsunami hazard for the Augusta-Siracusa area through the worst-case credible scenario technique, which can be schematically divided into the following steps: 1) Selection of five main source areas, both in the near- and in the far-field (Hyblaean-Malta escarpment, Messina Straits, Ionian subduction zone, Calabria offshore, western Hellenic Trench); 2) Choice of potential and credible tsunamigenic faults in each area: 38 faults were selected, with properly assigned magnitude, geometry and focal mechanism; 3) Computation of the maximum tsunami wave elevations along the eastern Sicily coast on a coarse grid (by means of the in-house code UBO-TSUFD) and extraction of the 9 scenarios that produce the largest effects in the target areas of Augusta and Siracusa; 4) For each of the 9 scenarios we run numerical UBO-TSUFD simulations over a set of five nested grids, with grid cells size decreasing from 3 km in the open Ionian sea to 40 m in the target areas of Augusta and Siracusa. The simulation results consist of fields of maximum water elevation, of maximum water column, of maximum velocity and of maximum momentum flux. The main findings for each single scenario and for the aggregate scenario are presented and discussed.