OS23C-2026
Mapping mantle-melting anomalies in Baja California: a combined helium-seismology approach

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Raquel Negrete-Aranda1, Ronald Michael Spelz2, David R Hilton3, Miguel Tellez2 and Oscar González-Yahimovich2, (1)CICESE National Center for Scientific Research and Higher Education of Mexico, GEOLOGY, Ensenada, Mexico, (2)UABC, Geology, Ensenada, Mexico, (3)University of California San Diego, Earth Sciences, La Jolla, CA, United States
Abstract:
In active tectonic settings, the presence of helium in aqueous fluids with 3He/4He ratios greater than in-situ production values (~0.05 RA where RA = air He or 1.4 x 10-6) indicates the contribution of mantle-derived volatiles to the total volatile inventory. This is an indicative of the presence of mantle-derived melts, which act to transfer volatiles from the solid Earth towards the surface. Thus, He has the potential to map regions of the underlying mantle which are undergoing partial melting – a phenomenon which should also be evident in the seismic record. Reports of high 3He/4He in hot springs in Baja California (BC) has prompted us to initiate a survey of the region to assess relationship(s) between He isotopes and geophysical images of the underlying mantle.

Previous studies report 3He/4He ratios of 0.54 RA for submarine hot springs (Punta Banda 108oC; Vidal, 1982) and 1.3 RA for spring waters (81oC) at Bahia Concepcion (Forrest et al.,2005). Our new survey of hot springs in northern BC has revealed that all 6 localities sampled to date, show the presence of mantle He with the highest ratio being 1.74RA (21% mantle-derived) at Puertecitos on the Gulf coast. He ratios are generally lower on the Pacific coast with the minimum mantle He contribution being 5% at Sierra Juárez (0.11RA). Thus, preliminary trends are of a west-to-east increase in the mantle He signal across the peninsula.

He results presented in this study correlate well with high resolution Rayleigh wave tomography images by Forsythe et al. (2007). Shear velocity variations in the BC crust and upper mantle have been interpreted as low velocity anomalies associated with dynamic upwelling and active melt production. More extensive sampling throughout BC coupled with analysis of other geochemical indicators of mantle degassing (e.g. CO2) will allow more detailed characterization of the extent and distribution of mantle melts in the region, facilitating assessment of the region’s geothermal potential.