NH51A-1863
Development of a social-hydrological-health framework for understanding risks of occurrence of diarrheal diseases

Friday, 18 December 2015
Poster Hall (Moscone South)
Md Rakibul Hassan Khan, West Virginia University, Civil and Environmental Engineering, Morgantown, WV, United States, Antarpreet Jutla, West Virginia University, Morgantown, WV, United States and Rita R Colwell, University of Maryland College Park, Centre for Bioinformatics and Computational Biology, College Park, MD, United States
Abstract:
Diarrheal diseases continue to pose a severe health threat in regions where sanitation facilities remain marginal and are prone to destruction. With limited efficacy of vaccines, it is important to device alternate methods to determine environmental conditions favorable for diarrheal diseases. Several vibrios (V. cholerae., V. vulnificus, V. parahaemolyticus) have characteristic signatures that are associated with large scale climatic processes. The interactions of vibrios with humans eventually lead to outbreak of diseases. Here, using cholera as one of the signature diarrheal disease, we present a framework coupling social, hydrological and microbiological understanding with satellite remote sensing data to predict environmental conditions associated with outbreak of disease in several regions of sub-Saharan Africa. Hydroclimatic processes, primarily precipitation and temperature are found to be strongly associated with epidemic and episodic outbreak of cholera. We will present an algorithm to classify regions susceptible to risks of outbreak cholera using profile method in five epidemic regions of Mozambique, Central African Republic, Cameroon, South Sudan and Rwanda. Conditions for occurrence of cholera were detectable at least one month in advance. Using spatial land surface temperature (LST) data from satellites along with water accessibility data and population data, the implementation of the algorithm aid in classification of cholera risk regions.