A52D-05
Evaluation of the Arctic Surface Radiation Budget in CMIP5 Models

Friday, 18 December 2015: 11:20
3004 (Moscone West)
Robyn Boeke, Science Systems and Applications, Inc. Hampton, Hampton, VA, United States and Patrick C Taylor, NASA Langley Research Center, Hampton, VA, United States
Abstract:
The Arctic region is warming at a rate nearly double the global average, and this trend is predicted to continue for the coming decades, as simulated in the Coupled Model Intercomparison Project 5 (CMIP5) climate projections. Despite the consistency in the projected surface warming rate relative to the globe, significant inter-model spread is found in the overall magnitude of Arctic surface temperature change, which leads to large inter-model spread in the simulation of surface radiative properties. The goal of this presentation is to determine the biases in the representation of the Arctic surface radiation budget seasonal cycle and discover the physical processes that explain the significant spread in projected Arctic warming. First, biases in the simulated Arctic surface radiation budget seasonal cycle within several CMIP5 climate models participating in the Historical forcing scenario are evaluated with respect to the CERES-SFC-EBAF and C3M data products. Next, the equations for longwave and shortwave cloud radiative forcing are decomposed using an independent column approximation (ICA) to identify which factors are driving changes to the annual cycle of cloud radiative forcing as well as what terms are contributing to the inter-model spread in the simulation of the surface energy budget. A multiple linear regression methodology is applied to the results of the ICA analysis using four atmospheric state variables as predictors: surface pressure, lower tropospheric stability, sea-ice concentration, and surface temperature. The impact of thermodynamics, atmospheric dynamics, and cloud-sea ice interactions on the annual cycle of cloud radiative effect will be determined.