EP54B-03
Observations of Sand Dune Migration on the Colorado River in Grand Canyon using High-Resolution Multibeam Bathymetry
Abstract:
Repeat, high-resolution multibeam bathymetric surveys were conducted in March and July 2015 along a reach of the Colorado River in Grand Canyon near the Diamond Creek gage (362 km downstream of Lees Ferry, AZ) to characterize the migration of sand dunes. The surveys were collected as part of a study designed to quantify the relative importance of bedload and suspended sediment transport and develop a predictive relationship for bedload transport. Concurrent measurements of suspended-sediment concentrations, bed-sediment grain size, and water velocity were also collected.The study site is approximately 350 m long and 50 m wide; water depths are 7 to 10 m during normal flows; and a field of sand dunes form along its entire length with negligible coarse material at the bed surface. Full swath coverage of the site required about 6 to 10 minutes to complete with two passes of the survey vessel. Mapping occurred continuously during several survey periods. For each survey period, time-series of bathymetric maps were constructed from each pair of survey lines. In March, surveys were collected over durations of 2, 3, 9, and 11 hours, at discharges of 339 to 382 m3/s. In July, surveys were collected over durations of 4, 4, and 13 hours, at discharges ranging from 481 to 595 ft3/s.
These surveys capture the migration of sand dunes over a wide range of discharge with an unprecedented temporal resolution. The dunes in March were between 30 and 50 cm in height, 5 m in length, and migrating downstream at about 1 m per hour. In July, dunes were between 75 and 130 cm in height and 10-15 m in length, and were migrating downstream at rates of 5 to 2 m per hour. The surveys also reveal that the dune migration is spatially and temporally variable, with fast-migrating small dunes variably superimposed on slower-moving larger dunes. The dunes also refract around shoreline talus piles and other flow constrictions collectively causing a large degree of dune deformation as they migrate.