V31A-3004
Mineral complexities as evidence for open-system processes in intermediate magmas of the Mount Baker volcanic field, northern Cascade arc

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Ricardo Daniel Escobar-Burciaga, Western Washington University, Geology, Bellingham, WA, United States and Susan M DeBari, Western Washington University, Bellingham, WA, United States
Abstract:
The petrogenesis of intermediate magmas in arcs is a critical contribution to crustal growth. Andesites are commonly thought of as a hybrid product, the result of two endmember magmas mixing. At the Mount Baker volcanic field (MBVF), northern Cascade arc, andesites are the predominantly erupted lavas since 1 Ma and yet their origin is poorly constrained. Previous studies have suggested that open-system processes play a dominant role. However, the studies rely heavily on bulk rock compositions and overlook complex mineral textures and compositions. To better understand the complex processes at work at MBVF, we focus on establishing mineral and crystal clot populations in three andesitic flow units (55-59% SiO2). Petrographic and geochemical analyses suggest that variable-composition crystal clot and phenocryst populations in a single flow are related. We interpret the crystal clots to represent cumulates entrained in the erupting host magma and that related phenocrysts are disaggregates of crystal clots. The existence of common, multiple phenocryst and crystal clot populations in each flow of different age and SiO2 content provides strong evidence that intermediate magmas of MBVF are more than just the end product of mixing between two magmas. Furthermore, we suggest that most phenocrysts do not represent equilibrium products of their host liquid, evident from wide compositional ranges of ferromagnesian minerals (e.g. augite core Mg# 70-87). In fact, the most primitive phenocryst populations show the least amount of disequilibrium texture but represent assemblages expected to fractionate from basaltic to basaltic-andesitic liquids rather than equilibrium assemblages from their host bulk rock “liquid” composition. As a result, we interpret the variable SiO2 signature of the three andesitic flow units to have been obtained through the incorporation of cumulates/liquids as basaltic to basaltic-andesitic magma ascends.