A51I-0187
Reproducing cloud and boundary layer structure observed in MAGIC campaign using ship-following large-eddy simulations
Abstract:
The 2012-2013 MAGIC shipborne deployment of the ARM mobile facility sampled a broad range of subtropical marine stratocumulus (Sc), cumulus (Cu), and transition regimes during cruises between Long Beach, CA, and Hololulu, HI. Ship-following large-eddy simulations (LES) of selected cruise legs of 4-5 days are compared with a broad suite of observations of cloud structure and radiative properties taken on the Horizon Spirit ship. This quantitative comparison across a realistic range of conditions assesses the suitability of LES for simulating the sensitivity of such cloud regimes to climate perturbations, and for guiding the development of cloud and boundary layer parameterizations in global climate and weather forecast models.The System for Atmospheric Modeling (SAM) LES is used with a small, doubly-periodic domain and variable vertical resolution, initialized using thermodynamic radiosonde profiles near the start of each cruise leg. Sea-surface temperatures are prescribed from observations, and ECMWF analyses are used to derive time-varying geostrophic wind, ship-relative large-scale advective forcing, and large-scale vertical velocity. ECMWF vertical velocities are adjusted to keep the temperature profile close to radiosonde profiles with a relaxation timescale of 1 day. The ship-measured accumulation-mode aerosol concentration is assumed throughout the boundary layer for nucleation of cloud droplets.
The ship-following approach allows efficient comparison of model output with a broad suite of ship-based observations. The simulations cannot be expected to match the observations on timescales less than three hours because of cloud-scale and mesoscale sampling variability. Nevertheless, a preliminary sample of eleven 2D runs of different legs predicts daily mean cloud fraction and surface longwave radiation with negligible systematic bias and correlation coefficients of 0.33 and 0.53, respectively. Full-leg 3D simulations will also be evaluated and presented.