H32C-08
Carbon Dynamics in the Hyporheic Zone of a Headwater Mountain Stream in the Cascade Mountains, Oregon

Wednesday, 16 December 2015: 12:05
3018 (Moscone West)
Steven M Wondzell1, Hayley Corson-rikert2, Roy Haggerty2 and Nicholas Dosch2, (1)USFS - Pacific Northwest Research Station, Corvallis, OR, United States, (2)Oregon State University, Corvallis, OR, United States
Abstract:
We investigated carbon dynamics in the hyporheic zone of a steep, forested, headwater catchment in the Cascade Mountains of western Oregon, USA. Water samples were collected monthly from the stream and a well network between July and December 2013 and again in March 2014. Samples collected from the well network showed that DOC concentrations decreased, and that DIC concentrations increased, with median travel time through the hyporheic zone on all sample dates. Further, the magnitude of the observed increase in DIC was approximately 10-times too large to be explained by metabolism of stream-source DOC. We examined two alternative explanations: 1) that different source waters – either groundwater rich in DIC or lateral inputs of soil water rich in labile DOC that was subsequently metabolized to DIC – mixed with stream water and thereby accounted for the high concentrations of DIC observed in the hyporheic zone, or 2) that changes in the concentrations of DOC and DIC were best explained by in-situ biogeochemical processing of buried particulate organic matter. End-member mixing analyses showed that neither groundwater nor lateral inputs of soil water influenced carbon chemistry within the hyporheic zone. The analyses could not rule out leaching from the overlying unsaturated riparian soils as a potential source of DOC, but the rate of input from this source would have to be much smaller than the rate at which DOC was metabolized in the hyporheic zone because concentrations of DOC in the hyporheic zone were always lower than in the stream. Overall, our results suggest that particulate organic carbon, perhaps augmented with DOC leached from the overlying soils, is the primary source of organic carbon to the hyporheic zone. Further, these measurements suggest that riparian zones supply, via hyporheic exchange, a disproportionately large fraction of carbon to headwater streams and may therefore play an outsized role in the global carbon cycle.