A33D-0197
Laboratory measurements of soot particle density change due to water uptake.
Abstract:
Black carbon containing soot particles are an important aerosol subclass owing to their light-absorbing properties. Furthermore, soot particles present challenges with regard to characterization and modeling of their microphysical, chemical, and optical properties, because of their inherent non-spherical, fractal morphology.Aggregation/coagulation of soot adds to the complexity of the particle morphology, while co-emitted organic compounds affect the chemical composition both during emission and though aging, which causes partitioning of secondary organic aerosol. Measurements of soot particles from vehicular and jet engine exhaust plumes have shown that the effective density can vary over a broad range (0.3-1.8 gm-3) and is affected by the fuel burn characteristics (fuel type, fuel equivalence ratio, combustion temperature), the particle size, and the extent of the aggregation.
The action of organic coatings and the uptake of particle water, through hygroscopic growth, can cause a dramatic change in the morphology of soot. Restructuring of the fractal morphology into a more compact form has the effect of increasing the effective particle density, thus reducing the particle size, with important implications for the optical and hygroscopic properties.
We present measurements of size-resolved particle density from laboratory generated fresh soot particles, under a range of operating conditions. We first filter by particle mass using an aerosol particle mass (APM) centrifugal analyzer and then subject the sample to a pre-humidification cycle in order to initiate particle restructuring. Finally, the sample is dried and the mobility size distribution is measured using a scanning mobility particle sizer (SMPS). A range of particle masses is scanned to determine the density as a function of size and, for each mass set point, a range of relative humidity settings are scanned to determine the extent of restructuring. We discuss the findings in relation to atmospherically relevant aerosol, and preview the extension of the laboratory setup for field deployment.