H31A-1408
Hydrocarbons Emissions Due to Wellbore and other Subsurface Leakage in the Uintah Basin, Utah

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Cody Watkins and Seth N Lyman, Utah State University, Logan, UT, United States
Abstract:
The explosive growth of oil and gas production in the United States has focused public and regulatory attention on environmental impacts of hydrocarbon extraction, including air quality and climate impacts. One potentially important emissions source is subsurface leakage of natural gas. Better understanding of wellbore and other subsurface leaks are important in providing ways to decrease pollution while increasing the efficiency of oil and gas production.

Soil gas measurements carried out by USGS over the last several years in Utah’s oil and gas fields have shown that, while concentrations of methane in soils near wells are typically low, soil gas near some wells can contain more than 50% methane. In the summers of 2013-2015 we carried out campaigns to measure the emission rate of methane and other hydrocarbons from soils near wells in the Uintah Basin, Utah. We also measured emissions at several locations on individual well pads and determined that concentrations of hydrocarbons tend to decrease with distance from the well head. Soil emissions were also measured at non-well sites in the same area to determine background emission rates. Emissions from exposed coal, oil shale, gilsonite, and fault zone surfaces were also measured. Relationships of emissions with soil gas concentrations, meteorological conditions, and soil properties were also investigated.