GC54B-06
Assessment of dissolved Pb concentration and isotopic composition in surface waters of the modern global ocean

Friday, 18 December 2015: 17:15
3003 (Moscone West)
Paulina Pinedo-Gonzalez, University of Southern California, Los Angeles, CA, United States
Abstract:
Lead (Pb) produced by human activities, mainly from leaded gasoline combustion and high-temperature industries, dominates Pb in our present-day oceans. Previous studies have shown that surface ocean Pb concentrations and isotope ratios have varied in time and space, reflecting the changes in the amount of inputs and sources of anthropogenic Pb. However, data on surface ocean Pb is quite limited, especially for some basins like the Indian Ocean. In the present study, Pb concentrations and stable isotopes (208, 207, and 206) have been analyzed in surface water samples (3m depth) collected during the Malaspina Circumnavigation Expedition, 2010. Our results are compared with data from the literature to i) evaluate the changing status of metal contamination in surface waters of the global ocean over the last 30 years, and ii) propose potential sources of modern Pb to the oceans.

Our results show that Pb concentrations in surface waters of the North Atlantic Ocean have decreased ~ 40% since 1975, attributable to the phase-out of leaded gasoline in North America. This result is corroborated by stable Pb isotope measurements. Furthermore, the isotopic gradient observed in surface waters of the studied transects in the north tropical and subtropical Atlantic Ocean can be attributed to simple mixing of European and African aerosols and Saharan Holocene loess.

Results from an understudied transect in the Southern Indian Ocean give an indication of the source region of Pb delivered to this region. Although comparison with literature data is limited, mixing of Australian ores and African and Australian coals could potentially explain the measured Pb isotope composition.

This study provides an opportunity to build on the work of previous oceanographic campaigns, enabling us to assess the impact of anthropogenic Pb inputs to the ocean and the relative importance of various Pb sources, providing new insights into the transport and fate of Pb in the oceans.