EP43A-0949
Controls on Dune Deformation Patterns in White Sands, New Mexico

Thursday, 17 December 2015
Poster Hall (Moscone South)
Dylan Bentley Lee, University of Pennsylvania, Philadelphia, PA, United States and Douglas J Jerolmack, Univ of PA-Earth &Envir Scienc, Philadelphia, PA, United States
Abstract:
Eolian dune fields exhibit a variety of pattern transitions, including: the ab initio appearance of dunes from no dunes; transverse to barchan and unvegetated barchan to vegetated parabolic. Recent model predictions offer some insight into the mechanisms underlying some of these transitions. However, there are few direct observations, and tests providing empirical verification are sparse. The White Sands dune field exhibits all three of the aforementioned transitions in sequence, from the upwind to downwind margin, and has the potential to be a testing ground for these predictions. Repeat LiDAR data at White Sands provide an excellent opportunity to study not only dune structure, but also dune dynamics, which can provide insight into how dunes destabilize from one dune morphology into another. We employ a recently developed method for decomposing dune migration into two components: “translation” of a dune, and changes in dune shape referred to as “deformation”. We find that the fastest moving dunes (i.e. the dunes translating most quickly) have the largest amount of deformation. Patterns of deformation also vary depending on dune type: transverse dunes experience coherent deformation, while parabolic dunes exhibit highly localized and apparently random deformation. Only a fraction of the deformation can be explained by the migration rate. A significant amount of deformation appears to be attributable to dune-dune interactions, which destabilize dune patterns in locations where dune density is high. At the interface between the transverse to barchan dune patterns, we describe how transverse dunes break up into barchans and compare it to published model results. Regarding the barchan to parabolic transition, we find that the onset of vegetation drives a gradual slowdown in migration rates, while the magnitude of deformation drops and becomes localized to dune crests as the arms are stabilized by plants.