Crust and Upper Mantle Structure of the Hellenic and Cyprus Subduction Zones from Gravity Data Modelling

Friday, 18 December 2015
Poster Hall (Moscone South)
Suleyman Alemdar, Rezene Mahatsente and Ibrahim Cemen, University of Alabama, Tuscaloosa, AL, United States
The neotectonics of the Anatolian and Aegean regions is the result of the African plate subduction along the Hellenic and Cyprus trenches and the Anatolian plate collision with the Eurosian plate. The African slab, as imaged by seismic tomography, penetrates the lower mantle and exhibits two major lateral tears below the Anatolian plate. The tears in the slab are related to low velocity structures in the sub-lithospheric mantle. The presence of low velocity structures in the upper mantle is a clear indication of anomalous asthenosphere (asthenospheric windows). What remains unclear is, however, how and to what extent the crust and upper mantle structure beneath the Anatolian region has been modified by the upwelling hot asthenospheric material.

To determine the effects of the upwelling hot asthenospheric material in the region, we developed a 3-D gravity model of the crust and upper mantle structure of the Aegean and Anatolian regions (24°-33° E and 34°-40° N). The gravity model is based on satellite-derived gravity data from GRACE, LAGEOS and GOCE missions (EIGEN 6C2). The results of the gravity modelling, as constrained by seismic tomography, shows that the crust above the asthenospheric window, where the subducted African slab exhibits major lateral tears, is relatively thin. The crustal thickness variation within the asthenospheric window area is between 24 & 29 km. In contrast, the regions outside the asthenospheric window area exhibit by far the largest crustal thickness (30 – 42 km). We therefore conclude that the observed crustal thinning in the asthenospheric window area might be attributed to thermal erosion induced by the upwelling hot asthenospheric material and extensional tectonics related to the Southwest retreating Hellenic trench and westward movement of the Anatolian micro plate. The thinning may also be responsible for the high geothermal gradient in the Denizli graben area where two major grabens (i.e., Alaşehir and Bűyűk Menderes Grabens) of Western Anatolia join together.