V43E-04
Long Pathways for Outgassing Generated by a Rapid and Large Shear Strain of Bubbly Fluids Reducing Effective Viscosity and Affecting Eruption Styles

Thursday, 17 December 2015: 14:25
308 (Moscone South)
Atsuko Namiki and Yukie Tanaka, Hiroshima University, Higashi-Hiroshima, Japan
Abstract:
The styles of basaltic explosive eruptions have a wide variety, which is usually attributed to the separation of volcanic gas from the surrounding silicate melt. As a mechanism of gas separation, shear deformation has been suggested. However, the bubble shape evolution under large strain at high strain rate and its effects on viscosity have not yet understood well.

We thus performed shear deformation experiments of bubbly liquid under high shear rate and large strain with in situ observation of bubble deformation and viscosity measurements. We used syrup solution as a magma analogue whose viscosity of 3, 50, 500 Pa s, similar to that of basaltic magma. We rotated disc-shaped bubbly syrup at shear rates of 0.03-10 s-1 with strains of 3-1000. Experiments show that deformed bubbles coalesce into larger bubbles and finally generate concentric air rings, resulting that the striped shape of air and liquid parts appears. The widths of air rings greatly exceed the bubble sizes and can be long outgassing pathways if those exist in a volcanic conduit. During the evolution of air rings the measured effective viscosity decreases, while after reaching to a steady state, viscous resistance increases again. At this stage, bubble volume and size in the liquid parts become considerably small. Time evolution of bubble size distribution suggests that most of bubbles are assimilated into the air rings and the remnants in the liquid parts break up into small bubbles.

Similar shear deformation of bubbly magma could occur in volcanic conduits, which generates large bubbles at a depth where the lower effective viscosity enhances the ascending velocity. The large bubbles may originate Strombolian eruption or suppresses the explosive eruption by making the long outgassing pathways reaching to the Earth’s surface. In both cases, bubble free dense melt accumulates at a shallow conduit. Our experiments suggest that, for larger melt viscosity and narrower conduit, the gas separation occurs efficiently.