T13B-2992
Receiver-Function Stacking Methods to Infer Crustal Anisotropic Structure with Application to the Turkish-Anatolian Plateau

Monday, 14 December 2015
Poster Hall (Moscone South)
Georg Rumpker and Ayoub Kaviani, Goethe University Frankfurt, Frankfurt, Germany
Abstract:
To account for the presence of seismic anisotropy within the crust and to estimate the relevant parameters, we first discuss a robust technique for the analysis of shear-wave splitting in layered anisotropic media by using converted shear phases. We use a combined approach that involves time-shifting and stacking of radial receiver functions and energy-minimization of transverse receiver functions to constrain the splitting parameters (i.e. the fast-polarization direction and the delay time) for an anisotropic layer. In multi-layered anisotropic media, the splitting parameters for the individual layers can be inferred by a layer-stripping approach, where the splitting effects due to shallower layers on converted phases from deeper discontinuities are successively corrected.

The effect of anisotropy on the estimates of crustal thickness and average bulk Vp/Vs ratio can be significant. Recently, we extended the approach of Zhu & Kanamori (2000) to include P-to-S converted waves and their crustal reverberations generated in the anisotropic case. The anisotropic parameters of the medium are first estimated using the splitting analysis of the Ps-phase as described above. Then, a grid-search is performed over layer thickness and Vp/Vs ratio, while accounting for all relevant arrivals (up to 20 phases) in the anisotropic medium.

We apply these techniques to receiver-function data from seismological stations across the Turkish-Anatolian Plateau to study seismic anisotropy in the crust and its relationship to crustal tectonics. Preliminary results reveal significant crustal anisotropy and indicate that the strength and direction of the anisotropy vary across the main tectonic boundaries. We also improve the estimates of the crustal thickness and the bulk Vp/Vs ratio by accounting for the presence of crustal anisotropy beneath the station.

Reference

Zhu, L. & H. Kanamori (2000), Moho depth variation in southern California from teleseismic receiver functions, J. Geophys. Res., 105(B2), 29692980, DOI: 10.1029/1999JB900322