T51B-2881
Age, Distribution, and Style of Deformation in Alaska North of 60°N: Implications for Assembly of Alaska

Friday, 18 December 2015
Poster Hall (Moscone South)
Thomas E Moore and Stephen E Box, U.S. Geological Survey, Menlo Park, CA, United States
Abstract:
The structural architecture of Alaska is the product of a complex history of deformation along both the Cordilleran and Arctic margins of North America through interactions with ocean plates and with continental elements of Laurentia, Siberia, and Baltica. We use geological constraints to assign areal deformation to 14 time intervals and map their distributions in Alaska. Alaska can be divided into three domains with differing histories of deformation. The northern domain experienced the Early Cretaceous Brookian orogeny, an oceanic arc-continent collisional orogeny, followed by a mid-Cretaceous extensional overprint. Opening of the oceanic Canada Basin rifted the orogen from the Canadian Arctic margin, producing the bent trends of the orogen. The second domain constitutes the Phanerozoic Peninsular-Wrangellia-Alexander arc terrane and its paired Mesozoic accretionary prisms. Its structural history is unrelated to domains to the north until a shared history of Late Cretaceous deformation. The third domain, situated between the first two domains and roughly bounded by the Cenozoic dextral Denali and Tintina faults, includes the Yukon Composite terrane (Laurentian origin) and the large Farewell (Baltica origin) terrane. These terranes are not linked until Late Cretaceous sedimentary overlap, but we have not identified a shared deformation between these two terranes that might mark their juxtaposition by collisional processes. Similar early Late Cretaceous sedimentary linkages stitch the northern and central domains. Late Late Cretaceous folding and thrusting across much of Alaska south of the Brooks Range correlates temporally with the collision of the southern domain with the remainder of Alaska. Early Cenozoic shortening is mild across much of the state but is significant in the Brooks Range, and correlates in time with dextral faulting, ridge subduction, and rotation of western Alaska. Late Cenozoic shortening is significant in southern Alaska inboard of the underthrusting Yakutat terrane at the Pacific margin.