EP33B-1064
Quantifying Surface Processes and Stratigraphic Characteristics Resulting from Large Magnitude High Frequency and Small Magnitude Low Frequency Relative Sea Level Cycles: An Experimental Study

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Lizhu Yu1, Qi Li1, Christopher R Esposito2 and Kyle M Straub1, (1)Tulane University of Louisiana, New Orleans, LA, United States, (2)Tulane University of Louisiana, Department of Earth and Environmental Sciences, New Orleans, LA, United States
Abstract:
Relative Sea-Level (RSL) change, which is a primary control on sequence stratigraphic architecture, has a close relationship with climate change. In order to explore the influence of RSL change on the stratigraphic record, we conducted three physical experiments which shared identical boundary conditions but differed in their RSL characteristics. Specifically, the three experiments differed with respect to two non-dimensional numbers that compare the magnitude and periodicity of RSL cycles to the spatial and temporal scales of autogenic processes, respectively. The magnitude of RSL change is quantified with H*, defined as the peak to trough difference in RSL during a cycle divided by a system’s maximum autogenic channel depth. The periodicity of RSL change is quantified with T*, defined as the period of RSL cycles divided by the time required to deposit one channel depth of sediment, on average, everywhere in the basin. Experiments performed included: 1) a control experiment lacking RSL cycles, used to define a system’s autogenics, 2) a high magnitude, high frequency RSL cycles experiment, and 3) a low magnitude, low frequency cycles experiment. We observe that the high magnitude, high frequency experiment resulted in the thickest channel bodies with the lowest width-to-depth ratios, while the low magnitude, long period experiment preserves a record of gradual shoreline transgression and regression producing facies that are the most continuous in space. We plan to integrate our experimental results with Delft3D numerical experiments models that sample similar non-dimensional characteristics of RSL cycles. Quantifying the influence of RSL change, normalized as a function of the spatial and temporal scales of autogenic processes will strengthen our ability to predict stratigraphic architecture and invert stratigraphy for paleo-environmental conditions.