GP33A-03
Mercury’s Crustal Magnetic Field from Low-Altitude Measurements by MESSENGER.

Wednesday, 16 December 2015: 14:10
300 (Moscone South)
Catherine L Johnson, Planetary Science Institute Tucson, Tucson, AZ, United States; University of British Columbia, Department of Earth, Ocean and Atmospheric Sciences, Vancouver, BC, Canada
Abstract:
Magnetized rocks can record the history of a planet’s magnetic field, a key constraint for understanding interior evolution. From orbital vector magnetic field measurements of Mercury taken by the MESSENGER spacecraft at altitudes below 150 km, we have detected fields indicative of crustal magnetization. Fields from non-crustal sources, which dominate the observations even at low altitudes, were estimated and subtracted from the observations using both magnetospheric models and signal filtering. The resulting high-pass filtered fields have amplitudes of a few to 20 nT. The first low-altitude signals were detected over the Suisei Planitia region and were confirmed by upward continuation to be of crustal origin. At least some contribution from thermoremanent magnetization is required to account for these signals, and we infer a lower bound on the average age of magnetization of 3.7–3.9 Ga on the basis of correlation of crustal magnetic fields with volcanic units of that age range. Ancient field strengths that range from those similar to Mercury’s present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury’s crust derived from MESSENGER elemental composition data. Here, we extend these initial results with observations obtained at spacecraft altitudes below 60 km at all body-fixed longitudes from ~40°N to ~75°N. The strongest crustal fields occur in the region 120°E to 210°E, and weaker signals characterize the northern volcanic plains. We test the hypothesis that the longest-wavelength crustal field signals in this region reflect magnetization contrasts between the Caloris basin and the surrounding intercrater plains and circum-Caloris plains. We report the spatial distribution of observed crustal fields, together with magnetization models derived from them and the implications of these models, particularly for the depth distribution of sources compatible with the observations.