The Ongoing Lava Flow Eruption of Sinabung Volcano (Sumatra, Indonesia): Observations from Structure-from-Motion and Satellite Remote Sensing

Monday, 14 December 2015: 14:25
308 (Moscone South)
Brett B Carr1, Amanda B Clarke1, Ramon Arrowsmith2 and Loÿc Vanderkluysen3, (1)Arizona State University, School of Earth & Space Exploration, Tempe, AZ, United States, (2)Arizona State University, EarthScope National Office, School of Earth and Space Exploration, Tempe, AZ, United States, (3)Drexel University, Biodiversity, Earth & Environmental Science, Philadelphia, PA, United States
Sinabung is a 2460 m high andesitic stratovolcano in North Sumatra, Indonesia. Its ongoing eruption has produced a 2.9 km long lava flow with two active summit lobes and frequent pyroclastic flows (≤ 5 km long) with associated plumes over 5 km high. Large viscous lava flows of this type are common at volcanoes around the world, but are rarely observed while active. This eruption therefore provides a special opportunity to observe and study the mechanisms of emplacement and growth of an active lava flow. In September 2014, we conducted a field campaign to collect ground-based photographs to analyze with Structure-from-Motion photogrammetric techniques. We built multiple 3D models from which we estimate the volume of the lava flow and identify areas where the flow was most active. Thermal infrared and visual satellite images provide information on the effusive eruption from its initiation in December 2013 to the present and allow us to estimate the eruption rate, advance rate and rheological characteristics of the flow. According to our DEMs the flow volume as of September 2014 was 100 Mm3, providing an average flow rate of 4.5 m3/s, while comparison of two DEMs from that month suggests that most growth occurred at the SE nose of the flow. Flow advancement was initially controlled by the yield strength of the flow crust while eruption and flow advance rates were at their highest in January-March 2014. A period of slow front advancement and inflation from March – October 2014 suggests that the flow’s interior had cooled and that propagation was limited by the interior yield strength. This interpretation is supported by the simultaneous generation of pyroclastic flows due to collapse of the upper portion of the lava flow and consequent lava breakout and creation of new flow lobes originating from the upper reaches in October 2014 and June 2015. Both lobes remain active as of August 2015 and present a significant hazard for collapse and generation of pyroclastic flows. We use a pre-eruption DEM of Sinabung provided by the Badan Informasi Geospasial (Indonesia) to identify over 20 older lava flows at Sinabung. The active flow appears to represent a typical eruption of Sinabung, with its length and area similar to previous flows.