V31B-3025
Is Kīlauea’s East Rift Zone eruption running out of gas?
Abstract:
Gases exsolving from magma are a key force that drives eruptive activity, and emissions from Kīlauea’s East Rift Zone (ERZ) dominated the volcano’s gas release from the beginning of the long-running and voluminous Pu‘u ‘Ō‘ō eruption in 1983, through February 2008. In the months prior to the March 2008 onset of eruptive activity within Halema‘uma‘u Crater, however, SO2 degassing at the summit climbed substantially, and summit gas release has remained elevated since. These unprecedented emissions associated with the new summit eruption effectively began robbing gas from magma destined for Kīlauea’s ERZ. As a result, ERZ SO2discharge, which had averaged 1,700 +-380 t/d for the previous 15 years, declined sharply and steadily beginning in September, 2008, and reached a new steady low of 380 +- 100 t/d by early 2011. This level persisted through mid-2015.In the years since the late 2008 downturn in ERZ SO2 emissions, there has been an overall slowdown in ERZ eruptive activity. Elevated emissions and effusive activity occurred briefly during the 2011 Kamoamoa fissure eruption and two other outbreaks at Pu‘u ‘Ō‘ō , but otherwise ERZ eruptive activity had waned by 2010, when effusion rates were measured at about half of the long-term rate. Also, the sulfur preserved in ERZ olivine melt-inclusions, which provides a record of pre-eruptive SO2degassing, has steadily declined along with equilibration temperatures of host olivine phenocrysts, since 2008. We suggest that the drop in gas content of magma reaching the ERZ, owing to summit pre-eruptive degassing, has contributed significantly to the downturn in ERZ activity.
While SO2 emissions from the ERZ have dropped to sustained levels lower than anything seen in the past 20 years, summit emissions have remained some of the highest recorded since regular measurements began at Kīlauea in 1979. Overall, average total SO2 discharge from Kīlauea in 2014, summit and ERZ, is still about 50% higher than for the 15 years prior to 2008. The effects of summit pre-eruptive degassing observed at Kilauea may have application at other summit-rift shield volcanoes.