H41L-08
Effects of Regional Topography and Spacecraft Observation Geometry on Surface Soil Moisture Estimation Accuracies

Thursday, 17 December 2015: 09:45
3022 (Moscone West)
Ruzbeh Akbar and Mahta Moghaddam, University of Southern California, The Ming Hsieh Dept. of Electr. Eng., Los Angeles, CA, United States
Abstract:
The NASA Soil Moisture Active-Passive Mission (SMAP), launched in January 2015, provides near-daily global surface soil moisture estimates via combined Active Radar and Passive Radiometer observations at various spatial resolutions. The goal of this mission is to enhance our understanding of global carbon and water cycles.

This presentation will focus on a comprehensive assessment of the SMAP high resolution radar backscatter data (formally the L1C_S0_HiRes data product) obtained over a 3 km Woody Savanna region in north-central California during a 2.5 month period starting late May 2015. The effects of spacecraft observation geometry (fore- and aft-looks as well as ascending and descending obits) along with regional topography on soil moisture estimation abilities will be examined. Furthermore surface soil moisture retrievals, obtained through utilization of different combinations of observation geometries, will be compared to an existing network of in situsensors.

Current electromagnetic scattering and emission models do not properly account for surface topography, therefore physical forward model predictions and observations have unaccounted mismatch errors which also affect soil moisture estimation accuracies. The goal of this study is to quantify these soil moisture prediction errors and highlight the need for new and complete Electromagnetic modeling efforts.