V53E-3165
Formation ages and thermal histories of fracture-filling hematite and Mn-oxide in Precambrian basement from (U-Th)/He dating and 4He/3He diffusion experiments
Friday, 18 December 2015
Poster Hall (Moscone South)
Peter W Reiners, University of Arizona, Tucson, AZ, United States, David L Shuster, Berkeley Geochronology Center, Berkeley, CA, United States and Nathan Evenson, University of Arizona, Department of Geosciences, Tucson, AZ, United States
Abstract:
Secondary Fe- and Mn-oxides in bedrock form from fluid flow associated with events that may not be preserved in stratigraphic records. (U-Th)/He chronometry is well suited for dating these phases but potential diffusive loss of 4He can complicate interpretations. Here we show that measuring He diffusion kinetics of dated samples can resolve whether ages record formation or cooling. Proterozoic (1.6 Ga) volcanics in Aravaipa Canyon, southern Arizona, contain 1.4-1.6-Ga quartz-vein-hosted hematite, as well as 1.0-1.1-Ga hematite precipitated on fractures and overlain by 20-30-Ma Mn-oxide. Hematite 4He/3He age spectra and multi-domain (MD) diffusion models are consistent with a small proportion (4-10%) of domains between 1-500 nm, larger proportions (5-15%) of 1-10 μm domains, and a majority (60-75%) of domains of 80-150 μm. Although the smallest domains would have extremely low He retentivity, models predict bulk “closure temperatures” of 180-200 °C. The 1.4-1.6-Ga quartz-vein hematite likely formed soon after eruption of its host rock, and has not been hotter than ~250 °C for Ma durations. The 1.0-1.1 Ga age of the fracture-fill hematite likely also records the timing of precipitation, but from fluids associated with nearby diabase of the same age. In contrast, the 4He/3He MD model of the 20-30-Ma Mn-oxide requires ~80% of 1-100 nm domains and 20% between 1-10 μm. Although the Mn-oxide likely formed at the same time as the hematite it coats, its age records transient heating from overlying 28-Ma volcanics. In all cases, approximate crystal sizes observed in SEM images are consistent with the predictions of MD modeling, and support the assumed kinetics of He diffusion (~147-157 kJ/mol and ~2.2×10-4 cm2/s for hematite, and ~134 kJ/mol and ~4×10-3 cm2/s for Mn-oxide).These results suggest that specular hematite can have bulk He closure temperatures at least as high as 200 °C and in some cases record precipitation; this is supported by our results on specularite from other locations as old as 2.2 Ga.