T13C-3023
Integrated Laser Ablation U/Pb and (U-Th)/He Dating of Detrital Accessory Minerals from the Naryani River, Central Nepal

Monday, 14 December 2015
Poster Hall (Moscone South)
Alexandra Horne1, Kip V Hodges1 and Matthijs C Van Soest2, (1)Arizona State University, Tempe, AZ, United States, (2)Arizona State University, School for Earth and Space Exploration, Tempe, AZ, United States
Abstract:
The newly developed ‘laser ablation double dating’ (LADD) technique, an integrated laser microprobe U/Pb and (U-Th)/He dating method, could be an exceptionally valuable tool in detrital thermochronology for identifying sedimentary provenance and evaluating the exhumation history of a source region. A recent proof-of-concept study has used LADD to successfully date both zircon and titanite crystals from the well-characterized Fish Canyon tuff, but we also believe that another accessory mineral, rutile, could be amenable to dating via the LADD technique. To continue the development of the method, we present an application of LADD to detrital zircon, titanite, and rutile from a sample collected on the lower Naryani River of central Nepal. Preliminary analyses of the sample have yielded zircon U/Pb dates ranging from 31.4 to 2405 Ma; zircon (U-Th)/He from 1.8 to 15.4 Ma; titanite U/Pb between 18 and 110 Ma; titanite (U-Th)/He between 1 and 16 Ma; rutile U/Pb from 6 to 45 Ma; and rutile (U-Th)/He from 2 to 25 Ma. In addition to the initial data, we can use Ti-in-zircon, Zr-in-titanite, and Zr-in-rutile thermometers to determine the range of possible long-term cooling rates from grains with U/Pb ages younger than collision. Thus far our results from zircon analyses imply a cooling rate of approximately 15°C/Myr; titanite analyses imply between 10 and 67°C/Myr; and rutile between 9 and 267°C/Myr. This spread in potential cooling rates, especially in the order of magnitude differences of cooling rates calculated from the rutile grains, suggests that the hinterland source regions of the Naryani river experienced dramatically different exhumation histories during Himalayan orogenisis. Ongoing analyses will expand the dataset such that we can more adequately characterize the range of possibilities represented in the sample.