T32C-08
Extensive young dacite lava flows between boninite and BABB in a backarc setting: NE Lau Basin

Wednesday, 16 December 2015: 12:05
304 (Moscone South)
Robert W Embley, NOAA Newport, Newport, OR, United States and Kenneth Howard Rubin, University of Hawaii at Manoa, Honolulu, HI, United States
Abstract:
Several hundred square kilometers of young dacite lava flows mapped by their high acoustic backscatter erupted in several batches in proximity to boninite and back-arc basin basalt (BABB) in the NE Lau Basin, the world’s fastest opening back-arc region and a site proposed as a modern analogue in some ophiolite models. Where sampled, these lavas are aphyric, glassy dacites and are not associated with andesite extrusives (commonly observed elsewhere). Several flow fields occur on the flank of the large silicic Niuatahi seamount. Two of the largest lava fields and several smaller ones (~220 km2) erupted as far as 60 km north of Niuatahi. Their occurrence is likely controlled by crustal fractures from the long-term extension in this rear-arc region. Determining thickness of these flows is problematic, but relief of 30-100 m on flow fronts and in collapsed areas yields volume estimates as high as ~7-18 km3 for the northern group. The mean silica content of the largest and best sampled dacite flow field (LL-B) is 65.6 ±0.2%, a remarkably consistent composition for such an extensive flow (~140 km2). Camera tows show lower viscosity flow forms, including many anastomatosing pillow tubes and ropey surfaces, as well as endogenous domes, ridges and lobes (some with “crease-like” extrusion ridges, and inflated lobes with extrusion structures). An enigmatic 2 x 1.5 km, 30-m deep collapse depression could mark an eruption center for the LL-B flow field. Low viscosity flow morphologies on portions of LL-B and a nearby smaller flow field implies high effusion rates during some phases of the eruption(s), which in turn implies some combination of higher than normal liquidus temperature and high water content. Submarine dacite flows have been described in ancient sequences from the Archaean through the Miocene but this is the first modern occurrence of large volume submarine dacite flows. The volume of these young dacite flows implies the presence of large differentiated melt batches in the NE Lau lithosphere.