B51D-0461
Effects of the 100-year most severe El Niño driven drought on above and below ground CO2 exchanges in a seasonal tropical forest
Abstract:
The role of environmental drivers in regulating carbon exchanges, such as the combined effects of different meteorological and hydrological factors, are still poorly understood in many tropical forests. For example, Central American tropical forests are characterized by a distinct dry season with large atmospheric evaporative demand, driven by solar radiations and sustained winds. In contrast, during the wet seasons, cloudiness results in lower radiation inputs but higher diffuse fraction, and higher water availability.Our site, Barro Colorado Island, located in Gatun Lake, Central Panama, averages 2800 mm of annual precipitation, with a pronounced dry season in Jan-Apr. Forest age varies between 100 and >400 yr. In July 2012, an eddy covariance system was installed on a 41 m tower on the top plateau of the island. In the current year (2015) the island is experiencing the most severe El Niño driven drought on record (precipitation is measured since 1921).
The eddy covariance measurements show that carbon and water fluxes are strongly influenced by hydrological conditions. Prolonged dry spells during the dry season limit both above ground fluxes (ET and GPP) and below ground processes (root and microbial activities). Light use efficiency is about 30% lower during the dry season and evapotranspiration can be as 40% below potential. These decreases in ecosystem functions are driven primarily by a combination of structural (reduction in leaf area) and physiological (stomata regulation) adaptation.
Similarly, soil effluxes respond strongly to hydrological conditions. In the dry season, lower soil respiration rates are spaced out by rare rain events generating large pulses. In contrast, during the wet season, frequent rain events suppress soil CO2effluxes, because of reduced diffusivity and oxygen depletion. Diurnal variation of soil respiration also suggested a potential translocation of photosynthates from leaf to roots to increase nutrient uptake during the dry months.
In 2015, preliminary results are showing an intensification of the seasonal patterns. The protraction of the dry season into the months of June and July are causing a rapid depletion of the soil water resources with detrimental effects on carbon sequestration, also considering that respiration rates from stems did not show a similar decline.