S41B-2732
Deep structure of Llaima Volcano from seismic ambient noise tomography: Preliminary results

Thursday, 17 December 2015
Poster Hall (Moscone South)
Luis Franco1, Thomas Dylan Mikesell2, Rebecca Rodd3, Jonathan M Lees3, Jeffrey Bruce Johnson4 and Tim Ronan4, (1)University of Concepcion, Concepcion, Chile, (2)Boise State University, Geosciences, Boise, ID, United States, (3)University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, (4)Boise State University, Boise, ID, United States
Abstract:
The ambient seismic noise tomography (ANT) method has become an important tool to image crustal structures and magmatic bodies at volcanoes. The frequency band of ambient noise provides complimentary data and added resolution to the deeper volcanic structures when compared to traditional tomography based on local earthquakes. The Llaima Volcano (38° 41.9' S and 71° 43.8' W) is a stratovolcano of basaltic-andesitic composition. Llaima is located in the South Volcanic Zone (ZVS) of the Andes and is listed as one of the most active volcanoes in South America, with a long documented historical record dating back to 1640. Llaima experienced violent eruptions in 1927 and 1957 (Naranjo and Moreno, 1991), and its last eruptive cycle (2008-2010) is considered the most important after the 1957 eruption.

Lacking seismic constraints on the deep structure under Llaima, petrologic data have suggested the presence of magmatic bodies (dikes). These bodies likely play an important role in the eruptive dynamics of Llaima (Bouvet de Maisonneuve, C., et al 2012). Analysis of the 2008-2010 seismicity shows a southern zone (approx. 15 km from the Llaima summit) where there were many Very Long Period events occurring prior to the eruptions. This is in agreement with a deformation zone determined by InSAR analysis (Fournier et al, 2010 and Bathke, 2011), but no geologic model based on geophysical imaging has been created yet.

Beginning in 2009, staff from the Chilean Geological Survey (SERNAGEOMIN) started to install a permanent seismic network consisting of nine stations. These nine stations have allowed Chilean seismologists to closely monitor the activity at Llaima, but prevented a high-resolution tomographic imaging study. During the summer of 2015, a temporary seismic network consisting of 26 stations was installed around Llaima. In the work presented here, we analyze continuous waveforms recorded between January and April 2015 from a total of 35 broadband stations (permanent and temporary). This network covers the total area of Llaima and provides the first study aimed at revealing the volcanic structure of Llaima. Moreover this is one of the first attempts to perform high resolution ANT at a Chilean volcano. We will present our tomography results and our first geologic interpretations of Llaima volcanic structure.