MR41A-2615
Laboratory Visualization of Hydraulic Fracture Propagation and Interaction with a Network of Preexisting Fractures

Thursday, 17 December 2015
Poster Hall (Moscone South)
Seiji Nakagawa1, Timothy J Kneafsey1 and Sharon E Borglin2, (1)Lawrence Berkeley National Laboratory, Berkeley, CA, United States, (2)Lawrence Berkeley National Lab, Berkeley, CA, United States
Abstract:
We present optical visualization experiments of hydraulic fracture propagation within transparent rock-analogue samples containing a network of preexisting fractures. Natural fractures and heterogeneities in rock have a great impact on hydraulic fracture propagation and resulting improvements in reservoir permeability. In recent years, many sophisticated numerical simulations on hydraulic fracturing have been conducted. Laboratory experiments on hydraulic fracturing are often performed with acoustic emission (Micro Earthquake) monitoring, which allows detection and location of fracturing and fracture propagation. However, the detected fractures are not necessarily hydraulically produced fractures which provide permeable pathways connected to the injection (and production) well. The primary objectives of our visualization experiments are (1) to obtain quantitative visual information of hydraulic fracture propagation affected by pre-existing fractures and (2) to distinguish fractures activated by the perturbed stress field away from the injected fluid and hydraulically produced fractures. The obtained data are also used to develop and validate a new numerical modeling technique (TOUGH-RBSN [Rigid-Body-Spring-Network] model) for hydraulic fracturing simulations, which is presented in a companion paper. The experiments are conducted using transparent soda-lime glass cubes (10 cm × 10 cm × 10 cm) containing either (1) 3D laser-engraved artificial fractures and fracture networks or (2) a random network of fractures produced by rapid thermal quenching. The strength (and also the permeability for the latter) of the fractures can be altered to examine their impact on hydraulic fracturing. The cubes are subjected to true-triaxial stress within a polyaxial loading frame, and hydraulic fractures are produced by injecting fluids with a range of viscosity into an analogue borehole drilled in the sample. The visual images of developing fractures are obtained both through a port hole on a side of the loading frame and via reflection in a diagonal mirror embedded in a transparent loading block.