G21B-1029
An Integrated Approach for the Assessment of the Natural and Anthropogenic Controls on Land Subsidence in the Kingdom of Saudi Arabia
Tuesday, 15 December 2015
Poster Hall (Moscone South)
Abdullah Othman1,2, Mohamed Sultan1, Mohamed Ahmed1, Talal Alharbi3, Esayas G Gebremichael1 and Mustafa Emil1, (1)Western Michigan University, Kalamazoo, MI, United States, (2)Umm Al-Qura University, Mecca, Saudi Arabia, (3)King Saud University, Riyadh, Saudi Arabia
Abstract:
Recent land subsidence incidences in the Kingdom of Saudi Arabia (KSA) resulted in loss in life and property. In this study, an integrated approach is adopted to accomplish the following: (1) map the spatial distribution of areas that are witnessing land subsidence, (2) quantify the rates of land subsidence, and (3) identify the factors causing the observed subsidence. A three-fold approach is applied: (1) use of interferometric techniques to assess the spatial distribution of land subsidence and to quantify the rates of subsidence, (2) generate a GIS database to encompass all relevant data and derived products, and (3) correlate findings from the radar exercise with relevant spatial and temporal datasets (e.g., remote sensing, geology, fluid extraction rates, distribution of urban areas, etc.). Three main areas were selected: (1) central and northern parts of the KSA, (2) areas surrounding the Ghawar oil/gas field, and (3) the Harrat Lunayyir volcanic field. Applications of two-pass, three-pass, and SBAS radar interferometric techniques over central KSA revealed the following: (1) subsidence rates of up to -15 mm/yr were detected; the spatial distribution of the subsided areas that were extracted using the various interferometric techniques are similar, (2) subsided areas correlated spatially with the distribution of: (a) areas with high groundwater extraction rates as evidenced from the analysis of field and Gravity Recovery and Climate Experiment (GRACE) data, (b) agricultural plantations as evidenced from the analysis of field and temporal Landsat data, (c) urban areas (e.g., Buraydah City), (d) outcrops of carbonates and anhydrite formations (e.g., Khuff and Jilh formations), (3) subsidence could be related to more than one parameter. Similar research activities are underway in northern KSA and in areas surrounding the Ghawar oil/gas and the Harrat Lunayyir volcanic fields to assess the distribution and factors controlling land deformation in those areas.