PA41C-05
Road Weather and Connected Vehicles

Thursday, 17 December 2015: 09:00
103 (Moscone South)
Brenda C Boyce, Booz Allen Hamilton DC, Transportation, Washington, DC, United States
Abstract:
On average, there are over 5.8 M vehicle crashes each year of which 23% are weather-related. Weather-related crashes are defined as those crashes that occur in adverse weather or on slick pavement. The vast majority of weather-related crashes happen on wet pavement (74%) and during rainfall (46%). Connected vehicle technologies hold the promise to transform road-weather management by providing improved road weather data in real time with greater temporal and geographic accuracy. This will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. The use of vehicle-based measurements of the road and surrounding atmosphere with other, more traditional weather data sources, and create road and atmospheric hazard products for a variety of users. The broad availability of road weather data from mobile sources will vastly improve the ability to detect and forecast weather and road conditions, and will provide the capability to manage road-weather response on specific roadway links. The RWMP is currently demonstrating how weather, road conditions, and related vehicle data can be used for decision making through an innovative Integrated Mobile Observations project. FHWA is partnering with 3 DOTs (MN, MI, & NV) to pilot these applications. One is a mobile alerts application called the Motorists Advisories and Warnings (MAW) and a maintenance decision support application. These applications blend traditional weather information (e.g., radar, surface stations) with mobile vehicle data (e.g., temperature, brake status, wiper status) to determine current weather conditions. These weather conditions, and other road-travel-relevant information, are provided to users via web and phone applications. The MAW provides nowcasts and short-term forecasts out to 24 hours while the EMDSS application can provide forecasts up to 72 hours in advance. The three DOTs have placed readers and external road weather sensors on their maintenance fleet vehicles to collect vehicular and meteorological data. Data from all three states is sent to a processing system called the Pikalert® Vehicle Data Translator (VDT) that quality checks and uses the data to infer current and forecasted weather conditions.