SM22A-05
Electric Field, Field-aligned Current and Electromagnetic Waves in the Dip Region in front of the Dipolarization Front

Tuesday, 15 December 2015: 11:08
2018 (Moscone West)
Suiyan Fu, Peking University, School of Earth and Space Sciences, Beijing, China
Abstract:
Dipolarization front (DF) is characterized by a strong increase of magnetic field Bz component often observed before the arrival of high-speed flows in the Earth’s plasma sheet. The DF interfaces between the high-speed flowing transient plasma and the ambient plasma. Ahead of the DFs, magnetic field Bz decreases and it is, called the “dip region.” However, unlike in the high-speed flow and the ambient plasma which can be described by MHD theory, kinetic effects are important in the dip region because the spatial scale is less than the ion gyroradius. Observation and simulation have demonstrated that the dip region is formed by the reflecting ions at the sharp front. Short lived electromagnetic waves are also observed here generated by the reflected ions. In addition, Hall electric field observed in this region is in the opposite direction of the electric field inside the DF. The dipolarization front and the dip region ahead of it formed a set of current systems and they are fundamentally important for understanding the cause of flow braking in the plasma sheet.