Eastern Australia’s submarine landslides: implications for tsunami hazard between Jervis Bay and Fraser Island

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Samantha L Clarke1, Thomas Hubble1, David W Airey2 and Stephen N Ward3, (1)Geocoastal Research Group, School of Geosciences, The University of Sydney, Sydney, Australia, (2)School of Civil Engineering, University of Sydney, Sydney, Australia, (3)University of California, Santa Cruz, CA, United States
A hazard assessment of submarine landslide generated tsunami for the east Australian continental slope is presented between Jervis Bay and Fraser Island. Submarine landslides are present in water depths of ~400 to 3500 m along the entire length of continental margin, but are increasingly prevalent northward of Coffs Harbour without clustering at any particular water depth. Two hundred and fifty individual submarine landslide scars greater than one kilometre in width are identified. Of these, thirty-six are calculated to produce a tsunami flow depth equal to or greater than 5 m at the coastline for an assumed landslide downslope velocity of 20 ms-1. Some landslides are both thick (>100 m) and wide (>5 km) and these have the greatest potential to generate the largest coastal flow depths (>10 m). Water depth of the landslides centre of mass strongly influences the onshore height of the tsunami’s surge with the larger events generated in shallower water depths between ~500 -1500 m. Maximum flow depth at the coastline is larger for thicker (50-250+ m) canyon landslides which occur on steeper slopes (>4°), compared to thinner (<50 m) plateau landslides which generally produce smaller tsunami. Maximum inundation distances and run-up heights of 1.6 km and 22 m respectively are calculated for landslide velocities of 20 ms-1. These values vary significantly depending on local coastal topography. There is no evidence for a submarine landslide large enough and young enough to have generated a Holocene megatsunami for the east coast of Australia.