P24A-05
Alteration in Hawaiian Drill Core: An analog for Martian basalts
Tuesday, 15 December 2015: 17:00
2007 (Moscone West)
Wendy M Calvin1, Abigail Fraeman2, Bethany L Ehlmann2 and Nicole C Lautze3, (1)University of Nevada Reno, Reno, NV, United States, (2)California Institute of Technology, Pasadena, CA, United States, (3)University of Hawaii at Manoa, Honolulu, HI, United States
Abstract:
The Humu’ula Groundwater Research Project (HGRP) drilled their first continuously-cored hole in the saddle region of the big island of Hawaii in March of 2013. Temperatures at the bottom of the hole were unexpectedly high and reached over 100C. The core traverses various lava flows, representing the shield-building phase of the island and the lithology is dominantly basalt with varying amounts of plagioclase and olivine phenocrysts. Logging of the core noted that discontinuous alteration became prevalent starting at ~ 1 km depth. In May of 2015 we collected 780 infrared spectra of the core from depths of 0.97 to 1.76 km using our portable field spectrometer with a contact probe and field of view of 10 mm. Many of the spectra are unaltered, showing mafic mineralogy (augite or augite with olivine). Minerals from aqueous alteration include clinochlore, micaceous minerals likely mixed with other common phyllic alteration products, and three groups of spectral types associated with zeolites. This suite of minerals suggests alteration was initiated from higher temperature and moderate pH fluids. Based on the field reconnaissance spectroscopy, 25 sections were cut that represent the alteration diversity for thin section and subsequent detailed petrologic analyses. Eight of these sections were examined using the Ultra-Compact Imaging Spectrometer (UCIS) prototype instrument at the Jet Propulsion Laboratory. UCIS collects spectra at 80 μm / pixel and identifies the same alteration mineralogy as the bulk samples, but clearly shows that the alteration occurs in veins and vugs. Unaltered olivine and pyroxene phenocrysts occur in the groundmass adjacent to highly altered vugs, and are preserved throughout the section surveyed. Given the limited alteration and abundant preservation of olivine to depths of 1.5 km, the core may be representative of alteration in moderate pH environments on Mars, where unaltered basaltic materials occur in close proximity to alteration products. Similar alteration might occur at the surface with limited water exposure, or in the subsurface where materials are subsequently exhumed through impact processes.