H43E-1548
Anthropogenic warming has decreased water supply in North Central Texas

Thursday, 17 December 2015
Poster Hall (Moscone South)
Tom H Brikowski, University of Texas at Dallas, Dallas, TX, United States
Abstract:
North Central Texas, including Dallas-Ft. Worth, the 4th largest metropolitan area in the U.S., has been in a state of drought for most of this 21st Century. Seven million residents there depend almost exclusively on surface water resources, and net water storage declined precipitously until record rainfall in early 2015. Part of the decline in water availability can be attributed to reduced runoff, where despite slightly above normal precipitation, natural basin runoff has declined almost 20% since its peak in the mid-1990's. These changes have coincided with 0.85oC warming above the historical 20th Century mean. Prevalent Vertisol (cracking) soils in the region make runoff especially sensitive to climate variations, and make it difficult to apply traditional hydrologic models to investigate climate-runoff links. Non-parametric (empirical) runoff elasticity methods circumvent these limitations, and are applied here, focusing on the Upper Trinity River basin (UTB).

Diagrammatic assessment of UTB temperature-precipitation (T-Pr) runoff elasticity indicates persistent warming greatly increases the risk of reduced runoff, based on historical experience. Evaluation of individual parameter elasticity indicates dry periods since 2000 have primarily been T-driven, in contrast to the Pr-driven 1951-6 drought of record. Observed decline in runoff during 2000-2010 is entirely attributable to increased T. Additional runoff declines from 2011-14 were driven by reduced Pr, augmenting the T-driven reductions. These T effects are most prominent to the west, and decline to minimal extent just east of the UTB. The observed warming can be related to anthropogenic CO2 increase with >95% certainty based on comparison of CMIP5 climate model results for the UTB with and without CO2 forcing. UTB runoff fraction of Pr decreased after 1980 with >97.5% certainty.

These results strongly indicate that 21st Century 20% decline in runoff from previous century norms is largely attributable to anthropogenic warming, despite above-average precipitation. Projections based on individual CMIP5 climate models indicate this temperature effect will continue to grow in the future, and will be the predominant contributor to persistent runoff reductions by 2040.