EP53B-1032
Climate Change, Glacier Retreat and Sediment Waves: Evidences from Fans in the Fox Glacial valley (New Zealand) and Analogical Modeling
Abstract:
As global climate continues warm, mountain environments are changing, and rates of glacial retreat are unprecedented. The hydrologic implications of this rapid ice retreat and changing climate conditions have been the focus of numerous studies, but the consequent effects on the sediment cascade in valleys and tributaries has received considerably less attention.In the present study, we investigated the role of glacial recession on sediment mobilization and deposition in a mountain valley catchment at Fox Glacier, New Zealand. In particular, we analyze the role of glacier recession on the formation of sediment fans in the main valley. Emphasis was put on the role of sediment, impounded by the glacier in side tributaries, becoming rapidly available for remobilization as the glacier retreats. The method is based on field observations, and measurements using high resolution GNSS (Trimble R8 survey grade differential GNSS) and photogrammetric methods using Structure from Motion based on ground-, helicopter- and UAV- photographs. Field observations were conducted in the period 2014 – 2015, and have been complimented with analogic modeling in the laboratory, in order to comprehend the processes driving rapid fan formation. The analogic model reproduced the retreat of the glacier and the response of a tributary, with simulations for both glaciated and de-glaciated conditions. For similar hydrologic and slope parameters, the fans created after glacial retreat have shown an acceleration in their formation of up to 12 times compared to fanes created without glacial influence. Field observations within the period 2013 – 2015 of Straight Creek Fan (Fox Valley, New Zealand) have confirmed laboratory simulations, with the fan growing to a radius superior to 200 m and a valley-long width superior to 450 m. As glaciers continue to retreat, it can be expected that sediment surges will occur in affected valleys, without the requirements of other forcing like earthquake or extreme weather events.