Exploring the properties of Solar Prominence Tornados

Friday, 18 December 2015
Poster Hall (Moscone South)
Esraa Ahmad1, Navdeep Kaur Panesar2, Alphonse C Sterling3 and Ronald L Moore3, (1)University of Massachusetts Boston, Chemistry, Boston, MA, United States, (2)University of Alabama in Huntsville, Huntsville, AL, United States, (3)NASA Marshall Space Flight Center, Huntsville, AL, United States
Solar prominences consist of relatively cool and dense plasma embedded in the hotter solar corona above the solar limb. They form along magnetic polarity inversion lines, and are magnetically supported against gravity at heights of up to ~100 Mm above the chromosphere. Often, parts of prominences visually resemble Earth-based tornados, with inverted-cone-shaped structures and internal motions suggestive of rotation. These “prominence tornados” clearly possess complex magnetic structure, but it is still not certain whether they actually rotate around a ‘’rotation’’ axis, or instead just appear to do so because of composite internal material motions such as counter-streaming flows or lateral (i.e. transverse to the field) oscillations. Here we study the structure and dynamics of five randomly selected prominences, using extreme ultraviolet (EUV) 171 Å images obtained with high spatial and temporal resolution by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) spacecraft. All of the prominences resided in non-active-region locations, and displayed what appeared to be tornado-like rotational motions. Our set includes examples oriented both broadside and end-on to our line-of-sight. We created time-distance plots of horizontal slices at several different heights of each prominence, to study the horizontal plasma motions. We observed patterns of oscillations at various heights in each prominence, and we measured parameters of these oscillations. We find the oscillation time periods to range over ~50 – 90 min, with average amplitudes of ~6,000 km, and with average velocities of ~7 kms-1. We found similar values for prominences viewed either broadside or end-on; this observed isotropy of the lateral oscillatory motion suggests that the apparent oscillations result from actual rotational plasma motions and/or lateral oscillations of the magnetic field, rather than to counter-streaming flows. This research was supported by the National Science Foundation under Grant No. AGS-1460767; EA participated in the Research Experience for Undergraduates (REU) program, at NASA/MSFC. Additional support was from a grant from the NASA LWS program.