T21A-2793
3-D geodynamic models of the India-Eurasia collision zone: Guiding numerical models with seismic and MT observations

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Sarah H Bischoff, Purdue University, West Lafayette, IN, United States
Abstract:
Piecing together the uplift and growth of the Tibetan Plateau requires a robust understanding of the present-day dynamics of the India-Eurasia collision zone. To aid in the understanding of mountain building and plateau growth, we developed a 3D finite element model of the Tibetan Plateau following Flesch and Bendick (2012). Our model is based on the vast collection of published geophysical data and employs COMSOL Multiphysics (www.comsol.com). We assume model material properties from the wide variety of published seismic and MT studies, incorporated with an updated, vertically averaged, effective viscosity distribution from Flesch et al. (2001). We test potential relationships between conductance/seismic velocity and strength (viscosity) by modeling strength difference contacts at imaged interfaces. We quantify fitness of candidate 3D viscosity functions by comparing solved model surface velocities to observed surface velocities inferred from GPS and Quaternary fault slip rates. The model geometry incorporates Earth curvature and extends eastward from 65° to 110°E, northward from 15° to 45°N, and vertically down to 100 km below sea level. The physics of deformation is governed by the Stokes equations describing incompressible Newtonian fluid flow. Boundary conditions consist of free slip across the bottom surface (representing the lithosphere-asthenosphere boundary) and moving edge walls constrained by a GPS-derived, continuous velocity field. Model results indicate a tradeoff between crust and mantle dominant strength. Best-fit models are achieved by a combination of strong crust/upper mantle with additional strain accommodation in localized weak zones.